Методика решения уравнений и неравенств

Страница 2

и доказать, что при t > 1 . Покажем другой способ:

.

Получившаяся функция, очевидно, является убывающей (основание растет, под знаком логарифма функция убывает). {LINKS}

Наше уравнение имеет вид: , значит, . Слева функция возрастающая, следовательно, решение единственно, оно легко находится подбором: x = 4.

Ответ. x = 4 .

Уравнения вида

f(

f (

x) ) =

x

. При решении уравнений указанного вида полезна бывает теорема:

Если y = f(x) – монотонно возрастающая функция, то уравнения

f(x) = x (А)

и

f (f (x)) = x (Б)

эквивалентны.

Доказательство. То, что уравнение (Б) является следствием уравнения (А), очевидно: любой корень (А) удовлетворяет (Б). (Если

f (x0) = x0, то f (f (x0)) = f (x0) = x0.). Докажем, что любой корень уравнения (Б) удовлетворяет уравнению (А). Пусть x0 такое, что f (f (x0)) = x0.Предположим, что f (x0) ≠ x0 и для определенности f (x0) > x0. Тогда f (f (x0)) > f (x0) > x0, что противоречит предположению ( f (f (x0)) = x0). Теорема доказана.

Верна ли теорема для монотонно убывающей функции?

Замечание. Если y = f (x) монотонно возрастает, то при любом k уравнения и f (x) = x эквивалентны.

Приведем несколько примеров использования этой теоремы.

1. Решить уравнение:.

Решени е. Перепишем уравнение . Рассмотрим функцию . Эта функция монотонно возрастает. Имеем уравнение

f (f (x)) =x. В соответствии с теоремой заменяем его на эквивалентное уравнение f (x) = x или .

Ответ.

.

2. Решить уравнение:

.

Решение. Преобразуем уравнение: .

Данное уравнение имеет вид: f (f (x)) = x, где .

Согласно теореме имеем эквивалентное уравнение: ,

.

Ответ. [14].

3. Решить систему уравнений:.

Решение. Рассмотрим функцию . Поскольку

при всех t, то f (t) возрастает.

Система имеет вид y = f (x), z = f (y), x = f (z), т.е. x = f (f (f (x))).

Согласно теореме x удовлетворяет уравнению f (x) = x или

.

Ответ. (0, 0, 0), (-1, -1, -1).

Использование экстремальных свойств рассматриваемых функций. Оценки.

Страницы: 1 2 3 4 5 6 7

Великая педагогика:

Современный этап развития казахских музыкальных инструментов
На современном этапе развития в Казахстане сформировалась разветвленная структура музыкальной культуры. Здесь каждый может найти то, что ему по душе. Наряду с исполнительским и композиторским творчеством в европейских жанрах в республике продолжают развиваться традиционные формы музицирования, функ ...

Организация исследования профессионального самоопределения старшеклассников
Проблема профессионального самоопределения носит фундаментальный характер, ибо она затрагивает общую проблему жизненного становления личности. Теоретический анализ литературы показывает, что на профессиональное самоопределение старшеклассника влияют социальные среды выбора профессии. Процесс выбора ...

Проблемы социализации детей-сирот
Рассматривая особенности социализации детей-сирот, необходимо определиться в понимании самого явления социализация. «Социализация (от лат. solialis - общественный) - процесс усвоения индивидуумом образцом поведения, психологических механизмов, социальных норм и ценностей, необходимых для успешного ...

Категории

Copyright © 2025 - All Rights Reserved - www.zelgo.ru