Методика решения уравнений и неравенств

Страница 1

Уравнения и неравенства ‑ традиционная тема школьного курса математики, занимающая большое место, начиная с младших классов, где простейшие уравнения и неравенства до введения теории на основе свойств арифметических действий, и кончая старшими классами, где решаются трансцендентные уравнения. {LINKS}

Уравнения и неравенства представляют собой тот алгебраический аппарат, тот язык, на который переводятся разного рода задачи, в том числе и прикладные, строятся их математические модели.

Использование монотонности функций при решении уравнений и неравенств.

Одну из наиболее часто встречающихся идей хорошо иллюстрирует решение следующего простого неравенства:

1. Решить неравенство:.

Решение. Есть два стандартных пути решения: возведение в квадрат (при условии ; если же , неравенство выполняется) и замена неизвестного .

Рассмотрим еще один способ – нестандартный. Функция, расположенная в левой части, монотонно возрастает, в первой части убывает. Из очевидных графических соображений следует, что уравнение имеет не более одного решения, причем если x0 – решение этого уравнения, то при будет , а решением данного неравенства будет . Значение x0 легко подбирается: x0 = 1.

Ответ. .

2. Решить уравнение:.

Решение. Данное уравнение имеет очевидное решение x = 1. Докажем, что других решений нет. Поделим обе части на , получим . Левая часть представляет собой монотонно убывающую функцию. Следовательно, каждое свое значение она принимает один раз, т.е. данное уравнение имеет единственное решение.

Ответ. x = 1.

Итак, основная идея, на которой основывались решения этих двух примеров, весьма проста: если f(x) монотонно возрастает, а φ(x) монотонно убывает, то уравнение f(x) = φ(x) имеет не более одного решения, причем если x = x0 – решение этого уравнения, то при x > x0 (x входит в область определения обеих функций f(x) и φ(x)) будет f(x) > φ(x), а при x < x0 будет

f(x) < φ(x).

Стоит обратить внимание на одну модификацию этой идеи, а именно: если f(x) – монотонная функция, то из равенства f(x) = f(y) следует, что x = y [8].

3. Решить уравнение:.

Решение. Преобразуем уравнение:

.

Рассмотрим функцию .

Докажем, что при t > 1 эта функция монотонно убывает. Это можно сделать, например, стандартным образом: найти производную

Страницы: 1 2 3 4 5 6

Великая педагогика:

Особенности физического развития детей, занимающихся хореографией
Формирование здоровья детей, полноценное развитие их организма - одна из основных проблем в современном обществе. Медики, родители и педагоги повсеместно констатируют отставание, задержки, нарушения, отклонения, несоответствия нормам в развитии детей, неполноценность их здоровья. Это касается в пер ...

История развития моделей обучения
Современная модель обучения отражает психологические закономерности организации и осуществления процесса образования, обучающихся разного возраста и в разных условиях. Наиболее употребительной в педагогической практике считается классификация по характеру и содержанию противоречий в учебной проблем ...

Этапы и методы экспериментального исследования
С целью подтверждения гипотезы, мы выстроили структуру экспериментальной работы и исследовали педагогические условия, при которых развитие детского творчества на занятиях по сюжетному рисованию в старшем дошкольном возрасте будет являться наиболее эффективными. Экспериментальное исследование провод ...

Категории

Copyright © 2020 - All Rights Reserved - www.zelgo.ru