Общеизвестно, что на вступительных экзаменах в вузы часто встречаются задачи, которым в «традиционном» школьном курсе в силу различных причин уделяется мало внимания.
Одним из видов таких упражнений являются задачи, содержащие параметры. В школьных учебниках практически нет заданий на эту тему. Однако овладение методикой их решения мне кажется очень полезным: оно существенно повышает уровень логической подготовки учащихся, позволяет чуть по-новому, как бы изнутри взглянуть на такие «банальные» функциональные зависимости, подробно анализируемые школьной программой, как, к примеру, линейные и квадратные многочлены. {LINKS}
Уравнения и неравенства с параметрами.
В подобного рода задачах встречаются два вида символов: неизвестные или переменные (обычно обозначаются буквами x, y, z,…) и параметры (a,b,c,…). Конечно разница между ними весьма условна, в известной степени можно сказать, что параметр – это переменная, значение которой считается фиксированным, и каждое значение параметра определяет относительно заданного неизвестного соответствующее уравнение (неравенство, систему). Иными словами, уравнение с параметром является фактически семейством уравнений, рассматриваемых при фиксированном значении параметра.
Введение параметра способствовало появлению качественно новых типов задач, вдохнуло, если так можно выразиться, новую жизнь в такие традиционные виды задач, как решение уравнений и неравенств.
1. Решить уравнение:.
Решение. Возводим обе части в квадрат (условие ):
Еще раз возводим в квадрат (условие ). Получаем окончательное уравнение
,
среди решений, которого надо найти те, для которых Получившееся уравнение имеет четвертую степень относительно неизвестного , но зато является квадратным относительно параметра . Попробуем этим обстоятельством воспользоваться:
Найдем дискриминант:
Теперь левая часть уравнения раскладывается на множители
Наше уравнение распадается на два:
и ,
каждое из которых надо решить при условии, что
Начнем с уравнения . Поскольку то из того, что , следует, что . Значит, нам достаточно найти лишь те решения, для которых ; тогда неравенство будет выполняться автоматически. Но сумма корней (если они есть) равна ; следовательно, уравнение может иметь лишь один неотрицательный корень при условии . Значит, при будет .
Перейдем ко второму уравнению . Из этого уравнения . Левая часть неположительная, правая неотрицательная. Равенство возможно лишь, если .
Ответ. Если , то ;
если , то ;
при остальных решений нет .
2. При каких значениях параметра а уравнение имеет корни сумма которых равна нулю?
Решение. Это уравнение – квадратное, его дискриминант
.
Сумма корней уравнения равна и по условию задачи она равна нулю, т.е. , что возможно при . Теперь необходимо осуществить контроль неотрицательности дискриминанта при этих значениях . При дискриминант положителен, тогда как при дискриминант оказывается отрицательным.
Великая педагогика:
Экспериментальная работа по изучению свойств арифметических действий по
авторским учебникам
При изучении данной проблемы решили провести небольшую экспериментальную работу. Базой экспериментальной работы был Башкирский лицей им.Р. Уметбаева г. Сибай. С этой целью мы провели уроки по учебникам Н.Б. Истоминой и М.И. Моро. Урок 1. Тема: Переместительное свойство сложения (учебник Н.Б. Истоми ...
Основные требования к использованию проектной методики
Эффективность проектной методики в большей степени обеспечивается интеллектуально-эмоциональной содержательностью включаемых в обучение тем. Также следует отметить их постепенное усложнение. Но отличительной особенностью тем является их конкретность. С самого начала обучения предполагается участие ...
Сущность социализации учащихся
Выпишите из словарей обыденное и научное определения следующих понятий: я - концепция, активные методы обучения, педагогическая мотивация, рефлексия педагогическая, пространство образовательное, воспитание Обыденное определение Научное определение Я-концепция - представление человека о себе Я-конце ...