Общеизвестно, что на вступительных экзаменах в вузы часто встречаются задачи, которым в «традиционном» школьном курсе в силу различных причин уделяется мало внимания.
Одним из видов таких упражнений являются задачи, содержащие параметры. В школьных учебниках практически нет заданий на эту тему. Однако овладение методикой их решения мне кажется очень полезным: оно существенно повышает уровень логической подготовки учащихся, позволяет чуть по-новому, как бы изнутри взглянуть на такие «банальные» функциональные зависимости, подробно анализируемые школьной программой, как, к примеру, линейные и квадратные многочлены. {LINKS}
Уравнения и неравенства с параметрами.
В подобного рода задачах встречаются два вида символов: неизвестные или переменные (обычно обозначаются буквами x, y, z,…) и параметры (a,b,c,…). Конечно разница между ними весьма условна, в известной степени можно сказать, что параметр – это переменная, значение которой считается фиксированным, и каждое значение параметра определяет относительно заданного неизвестного соответствующее уравнение (неравенство, систему). Иными словами, уравнение с параметром является фактически семейством уравнений, рассматриваемых при фиксированном значении параметра.
Введение параметра способствовало появлению качественно новых типов задач, вдохнуло, если так можно выразиться, новую жизнь в такие традиционные виды задач, как решение уравнений и неравенств.
1. Решить уравнение:
.
Решение. Возводим обе части в квадрат (условие
):
Еще раз возводим в квадрат (условие
). Получаем окончательное уравнение
,
среди решений, которого надо найти те, для которых
Получившееся уравнение имеет четвертую степень относительно неизвестного
, но зато является квадратным относительно параметра
. Попробуем этим обстоятельством воспользоваться:
Найдем дискриминант:
Теперь левая часть уравнения раскладывается на множители
Наше уравнение распадается на два:
и
,
каждое из которых надо решить при условии, что
Начнем с уравнения
. Поскольку
то из того, что
, следует, что
. Значит, нам достаточно найти лишь те решения, для которых
; тогда неравенство
будет выполняться автоматически. Но сумма корней (если они есть) равна
; следовательно, уравнение
может иметь лишь один неотрицательный корень при условии
. Значит, при
будет
.
Перейдем ко второму уравнению
. Из этого уравнения
. Левая часть неположительная, правая неотрицательная. Равенство возможно лишь, если
.
Ответ. Если
, то
;
если
, то
;
при остальных
решений нет .
2. При каких значениях параметра а уравнение
имеет корни сумма которых равна нулю?
Решение. Это уравнение – квадратное, его дискриминант
.
Сумма корней уравнения равна
и по условию задачи она равна нулю, т.е.
, что возможно при
. Теперь необходимо осуществить контроль неотрицательности дискриминанта при этих значениях
. При
дискриминант
положителен, тогда как при
дискриминант
оказывается отрицательным.
Великая педагогика:
Производственная
педагогика
Производственная педагогика изучает: закономерности обучения работающих; переориентацию на новые средства производства; повышение квалификации работающих; переориентацию на новые профессии. Закономерности обучения работающих необходимы для обучения студентов, или новых прибывших работников, техноло ...
Особенности личностного развития ребенка в неблагополучной семье
Личность - феномен общественного развития, конкретный человек, обладающий сознанием и самосознанием. Личность обладает набором обязательных социальных качеств. Это индивидуальность, разумность, ответственность, характер и темперамент, активность и целеустремленность, самоконтроль и самоанализ, напр ...
Экспериментальная работа по обучению рассказыванию
Результаты констатирующего экспериментального исследования показали, что дети с ОНР III уровня способны к пересказу коротких текстов, составлению рассказов по сюжетным картинкам, к рассказыванию из личного опыта, к рассказыванию по данному началу, но все-таки это еще значительно отличается от связн ...