Производная и ее применение

Страница 1

Часто нас интересует не значение какой-либо величины, а ее изменение. Например, сила упругости пружины пропорциональна удлинению пружины; работа есть изменение энергии; средняя скорость — это отношение перемещения к промежутку времени, за который было совершено это перемещение, и т. д.

При сравнении значения функции f в некоторой фиксированной точке х0 со значениями этой функции в различных точках х, лежащих в окрестности х0, удобно выражать разность f (х) — f (х0) через разность х — х0, пользуясь понятиями «приращение аргумента» и «приращение функции». Объясним их смысл.

Пусть х — произвольная точка, лежащая в некоторой окрестности фиксированной точки х0. Разность х — х0 называется приращением независимой переменной (или приращением аргумента) в точке х0 и обозначается ∆х;. Таким образом,

∆х=х-х0,

откуда следует, что х=х0+∆х

Говорят также, что Первоначальное значение аргумента х0 получило приращение ∆х. Вследствие этого значение функции f изменится на величину

f(x) – f(x0) = f(x0+∆х) – f(x0)

Эта разность называется приращением функции f в точке х0, соответствующим приращению ∆х, и обозначается символом ∆f (читается «дельта эф»), т. е. по определению

∆f = f(x0+∆х) – f(x0)

откуда

f(x) = f(x0+∆х) = f(x0) ∆f

Обратите внимание: при фиксированном x0 приращение ∆f есть функция от ∆х.

∆f называют также приращением зависимой переменной и обозначают через ∆у для функции y = f(x).

Пример: Дан куб с ребром а. Выразим погрешность ∆V, допущенную при вычислении объема этого куба, если погрешность при измерении длины ребра равна ∆х. По определению приращения х = a + ∆x, тогда

Рассмотрим график функции y = f(x). Геометрический смысл приращений ∆х и ∆f (приращение ∆f обозначают также ∆у) можно понять, рассмотрев рисунок 80.

Прямую l, проходящую через любые две точки графика функции l, называют секущей к графику f. Угловой коэффициент k секущей, проходящей через точки (х0; y0) и (х; у), равен .

Его удобно выразить через приращения ∆х и ∆у.

(Напомним, что угловой коэффициент прямой y = kx+b равен тангенсу угла а, который эта прямая образует с осью абсцисс.)

С помощью введенных обозначений приращений удобно также выражать среднюю скорость движения за промежуток времени [t0;t0+∆t]. Если точка движется по прямой и известна ее координата х(t), то

Эта формула верна и для ∆t<0 (для промежутка [t0 + ∆t; t0]). В самом деле, в этом случае перемещение точки равно х (t0) — x(t0 + ∆x); длительность промежутка времени равна —∆t, и, следовательно,

Аналогично выражение называют средней скоростью изменения функции на промежутке с концами x0 и x0+∆х.

Первообразная и интеграл

Вспомним пример из механики. Если в начальный момент времени t = 0 скорость тела равна 0, т. е. u (0) = 0, то при свободном падении тело к моменту времени t пройдет путь

(1)

Формула (1) была найдена Галилеем экспериментально. Дифференцированием находим скорость:

Страницы: 1 2 3

Великая педагогика:

Опытно-экспериментальное исследование условий профессионального самоопределения старшеклассников
Задачей диагностического этапа является самопознание (индивидуальных особенностей и профессиональной направленности) личности. С помощью методов диагностики происходит дальнейшее развитие познавательного компонента. Традиционные диагностические средства используют в контексте программы, направленно ...

Структура речевой коммуникации
Вербальное общение является наиболее исследованной разновидностью человеческой коммуникации. Кроме этого, это наиболее универсальный способ передачи мысли. На вербальный человеческий язык можно ‘перевести’ сообщение, созданное с помощью любой другой знаковой системы. Например, сигнал красный свет п ...

Использование традиций народной педагогики в малочисленных сельских школах
Как известно, воспитание в традициях русской народной педагогической культуры никогда не противопоставлялось обучению. Наследуя в своей профессиональной деятельности прогрессивные народные педагогические традиции, современные педагоги рассматривают образование как неотъемлимую часть несоизмеримо бо ...

Категории

Copyright © 2019 - All Rights Reserved - www.zelgo.ru