Производная и ее применение

Страница 2

(2)

Второе дифференцирование дает ускорение:

т. е. ускорение постоянно.

Более типично для механики иное положение: известно ускорение точки a(t) (в нашем случае оно постоянно), требуется найти закон изменения скорости u (t), а также найти координату s (t). Иными словами, по заданной производной u′(t), равной a (t), надо найти u (t), а затем по производной s′(t), равной u (t), найти s (t).

Для решения таких задач служит операция интегрирования, обратная операции дифференцирования.

Определение. Функция F называется первообразной для функции f на заданном промежутке, если для всех х из этого промежутка

F'(x)=f(x).

Показательная и логарифмическая функции

1. Определение корня. С понятием квадратного корня из числа, а вы уже знакомы: это такое число, квадрат которого равен а. Аналогично определяется корень п-й степени из числа а, где п — произвольное натуральное число.

Определение. Корнем п-й степени из числа а называется такое число, п-я степень которого равна а.

Пример 1. Корень третьей степени из числа 27 равен 3, так как З3 = 27. Числа 2 и - 2 являются корнями шестой степени из числа 64, поскольку 26 = 64 и (- 2)6 = 64.

Согласно данному определению корень п-я степени из числа а — это решение уравнения хп = а. Число корней этого уравнения зависит от п и а. Рассмотрим функцию f (х) = хп. Как известно, на промежутке [0; ∞) эта функция при любом п возрастает и принимает все значения из промежутка [0; ∞). По теореме о корне уравнение хп = а для любого а [0; оо) имеет неотрицательный корень и притом только один. Его называют арифметическим корнем п-й степени из числа an обозначают ; число п называется показателем корня, а само число а — подкоренным выражением. Знак корня √ называют также радикалом.

Определение. Арифметическим корнем п-й степени из числа а называют неотрицательное число, п-я степень которого равна а.

При четных п функция f(x) = xn четна. Отсюда следует, что если а>0, то уравнение хп = а, кроме корня х1 = , имеет также корень х2 = - ,. Если а = 0, то корень один: х = 0; если а<0, то это уравнение корней не имеет, поскольку четная степень любого числа неотрицательна.

Итак, при четном п существуют два корня п-й степени из любого положительного числа а; корень п-й степени из числа 0 равен нулю; корней -четной степени из отрицательных чисел не существует.

При нечетных значениях п функция f(x) = xn возрастает на всей числовой прямой; ее область значений — множество всех действительных чисел. Применяя теорему о корне, находим, что уравнение хп — а имеет один корень при любом а и, в частности, при а<0. Этот корень для любого значения а (в том числе и а отрицательного) обозначают

Итак, при нечетном п существует корень п-й степени из любого числа а и притом только один.

Для корней нечетной степени справедливо равенство

В самом деле,

т.е. число —есть корень n-й степени из — а. Но такой корень при нечетном п единственный. Следовательно,

Страницы: 1 2 3

Великая педагогика:

Методика использования предметно-развивающей среды как средство экологического воспитания
Одним из важнейших культурообразующих компонентов среды жизни дошкольника является экологический компонент. Под «экологией детства» можно понимать организацию такого образовательного пространства, которая бы сохраняла истинно человеческую гуманитарную составляющую в развитии ребёнка. Основа экологи ...

Урок – пресс-конференция
Такой урок лучше проводить как заключительный по изучаемой теме. Как правило, он проводится в виде ролевой игры, т.к. предполагает наличие определенных ролей: это беседы членов делегаций или других групп с представителями телевидения, прессы, журналистами газет и журналов, фотокорреспондентами. Пер ...

Упражнения и их влияние на формирование знаний в процессе физического воспитания
Нет почти ни одной публикации, посвященной обучению моторным навыкам, в которой не упоминалось бы о роли и значении упражнений в приобретении и совершенствовании знаний о двигательных стереотипах. Часто упражнения рассматриваются как важнейший элемент, определяющий характер обучения двигательным на ...

Категории

Copyright © 2019 - All Rights Reserved - www.zelgo.ru