Правила и теоремы теории вероятностей

Страница 4

Формула Бейеса

Пусть в условиях рассуждения, относящегося к формуле полной вероятности, произведено одно испытание, в результате которого произошло событие А. Спрашивается: как изменились (в связи с тем, что событие А уже произошло) ве­личины P(Bk), k = 1, . , п. {LINKS}

Найдем условную вероятность РA(Вk).

По теореме умножения вероятностей и формуле (3) имеем:

Отсюда:

Наконец, используя формулу полной вероятности, находим

(k=1, 2, …, n). (7)

Формулу(7) называют формулой Бейеса (Байеса)

Пример. Большая популяция людей разбита на две группы одинаковой численности. Диета одной группы отличалась высоким содержанием ненасыщенных жиров, а диета контрольной группы была богата насыщенными жирами. После 10 лет пребывания на этих диетах возникновение сердечнососудистых заболеваний составило в этих группах соответственно 31% и 48%. Случайно выбранный из популяции человек имеет сердечно-сосудистое заболевание. Какова вероятность того, что этот человек принадлежит к контрольной группе?

Введем обозначения для событий:

А - случайно выбранный из популяции человек имеет сердечно-сосудистое заболевание;

B1 - человек придерживался специальной диеты;

В2 - человек принадлежал к контрольной группе. Имеем

Р(В1) = Р(В2) = 0,5,

(A) = 0,31, (A) = 0,48.

Согласно формуле полной вероятности

Р(А) = 0,5 ∙ 0,31 + 0,5 ∙ 0,48 = 0,395

и, наконец, в силу формулы (7) искомая вероятность

.

Таким образом, можно привести много разнообразных примеров случайных величин. Все же и в мире случайностей обнаруживаются определенные закономерности. Математический аппарат для изучения таких закономерностей и дает теория вероятностей. Она занимается математическим анализом случайных событий и связанных с ними случайных величин.

Для решения задач по теории вероятностей следует применять следующие теоремы: сложения вероятностей несовместимых событий, умножения вероятностей, сложений вероятностей совместимых событий; формулы: полной вероятности, Бейеса (Байеса).

Одной из форм дифференцированного обучения по курсу теории вероятностей может являться факультативный курс.

Страницы: 1 2 3 4 

Великая педагогика:

Семья как специфическая педагогическая система. Особенности развития современной семьи
Социология рассматривает семью как часть целого общественного организма, как клетку общества, как социальный воспитательный коллектив. Все изменения, происходящие в социально-экономической сфере, обязательно находят свое отражение в семье. Но в отличие от других социальных коллективов - производств ...

Особенности развития познавательной активности детей дошкольного возраста
Дошкольное детство - длительный период, закладывающий фундамент будущей личности и во многом ее определяющий. Как отмечает Е.А. Аркин, это период, когда « .и семья, и общество создает для ребенка все необходимые и возможные условия ." для их развития. Именно дошкольное детство является периодо ...

Определение задачи. Классификация и функции задач в обучении
Учебные математические задачи являются очень эффективным и часто незаменимым средством усвоения учащимися понятий и методов школьного курса математики. Велика роль задач в развитии математического мышления и в математическом воспитании учащихся, в формировании у них умений и навыков в практическом ...

Категории

Copyright © 2020 - All Rights Reserved - www.zelgo.ru