Правила и теоремы теории вероятностей

Страница 4

Формула Бейеса

Пусть в условиях рассуждения, относящегося к формуле полной вероятности, произведено одно испытание, в результате которого произошло событие А. Спрашивается: как изменились (в связи с тем, что событие А уже произошло) ве­личины P(Bk), k = 1, . , п. {LINKS}

Найдем условную вероятность РA(Вk).

По теореме умножения вероятностей и формуле (3) имеем:

Отсюда:

Наконец, используя формулу полной вероятности, находим

(k=1, 2, …, n). (7)

Формулу(7) называют формулой Бейеса (Байеса)

Пример. Большая популяция людей разбита на две группы одинаковой численности. Диета одной группы отличалась высоким содержанием ненасыщенных жиров, а диета контрольной группы была богата насыщенными жирами. После 10 лет пребывания на этих диетах возникновение сердечнососудистых заболеваний составило в этих группах соответственно 31% и 48%. Случайно выбранный из популяции человек имеет сердечно-сосудистое заболевание. Какова вероятность того, что этот человек принадлежит к контрольной группе?

Введем обозначения для событий:

А - случайно выбранный из популяции человек имеет сердечно-сосудистое заболевание;

B1 - человек придерживался специальной диеты;

В2 - человек принадлежал к контрольной группе. Имеем

Р(В1) = Р(В2) = 0,5,

(A) = 0,31, (A) = 0,48.

Согласно формуле полной вероятности

Р(А) = 0,5 ∙ 0,31 + 0,5 ∙ 0,48 = 0,395

и, наконец, в силу формулы (7) искомая вероятность

.

Таким образом, можно привести много разнообразных примеров случайных величин. Все же и в мире случайностей обнаруживаются определенные закономерности. Математический аппарат для изучения таких закономерностей и дает теория вероятностей. Она занимается математическим анализом случайных событий и связанных с ними случайных величин.

Для решения задач по теории вероятностей следует применять следующие теоремы: сложения вероятностей несовместимых событий, умножения вероятностей, сложений вероятностей совместимых событий; формулы: полной вероятности, Бейеса (Байеса).

Одной из форм дифференцированного обучения по курсу теории вероятностей может являться факультативный курс.

Страницы: 1 2 3 4 

Великая педагогика:

Понятие и значение целей
Цель – это образ того результата, который стремится получить субъект, выполняя те или иные действия. Но не всякий такой образ является целью. Цель – не просто образ желаемого результата (в этом она совпадает и с прекраснодушными мечтаниями, прожектами и т.п.), а образ результата, во-первых, с фикси ...

Педагогическое творчество как фактор развития педагогических способностей
Основное содержание деятельности преподавателя включает в себя выполнение нескольких функций — обучающей, воспитывающей, организующей и исследовательской. Они воспринимаются в единстве, хотя у многих одни довлеют над другими. Педагогические цели часто побуждают к глубоким обобщениям и систематизаци ...

Психолого–педагогическая характеристика ребенка младшего школьного возраста
В современной системе воспитания младший школьный возраст охватывает период жизни ребенка от 7 до 10 – 11 лет (I – IV классы школы). В этот период происходит дальнейшее физическое и психофизиологическое развитие ребенка, обеспечивающее возможность систематического обучения в школе. Начало обучения ...

Категории

Copyright © 2021 - All Rights Reserved - www.zelgo.ru