Ответ. Треугольник тупоугольный (тупым является угол АСВ).
2. Вася и Петя победили между собой 39 орехов. Число орехов, доставшихся любому из них, меньше удвоенного числа орехов, доставшихся другому. Квадрат трети числа орехов, доставшихся Пете, меньше числа орехов, доставшихся Васе. Сколько орехов у каждого? {LINKS}
Решение. Если мы обозначим через x и y количество орехов, доставшихся соответственно Васе и Пете, то без труда составим систему из одного уравнения и трех неравенств:
Сложность задачи в третьей части – в решении системы. При этом мы должны помнить, что x и y – целые положительные числа. Из уравнения найдем . Для y будем иметь систему из трех неравенств:
Из первых двух неравенств найдем . Последнее неравенство перепишем в виде
Можно, конечно, решить это неравенство. Но лучше поступить иначе. Поскольку y – целое положительное число, то при
будем иметь
, а при
будет
, то
. Таким образом,
.
Ответ. 25 и 14 орехов.
3. Пункт А находится на берегу реки, ширина которой 400 м, скорость течения 3 км / ч. Пункт В расположен ниже по течению в 4 км от А (если В1 – проекция В на берег, на котором расположен А, то АВ1=4 км), на расстоянии 2 км 680 м от противоположного берега (А и В – по разные стороны реки). Турист выехал из А на лодке, пересек реку, оставил на берегу лодку, дошел до В и вернулся тем же путем. На всех участках, по реке и по суше, он двигался прямолинейно. Скорость лодки в стоячей воде 5 км / ч, скорость передвижения туриста пешком 3,2 км / ч. За какое наименьшее время мог проделать свое путешествие турист?
Решение. Пусть турист приплыл в точку С на противоположном берегу. Причем СD = x, где D – пункт, противоположный А (рис. 1,а) ( АD перпендикулярен берегам ). Если время на прохождение участка АС равно t1, то на участке CD можно найти такую точку С1, что AC1 = 5t1, C1C = 3t1.
Это означает, что вектор - путь, реально пройденный лодкой, мы представляем в виде суммы двух векторов:
- путь, пройденный лодкой,
если бы не было течения, и - путь лодки под воздействием одного течения.
Рис. 1 а)
Записав для треугольника AC1D теорему Пифагора, получим
или
. (1)
Аналогично, если t2 – время на пути от C до A, определив точку С2 ниже С так, что , получим для t2 уравнение
Великая педагогика:
Специфика иноязычного общения как вида речевой деятельности
Будучи сложным и многогранным, специально организуемым процессом отражения в сознании учащегося реальной действительности, обучение есть не что иное, как специфический процесс познания, направляемый педагогом. Обучение всегда происходит в общении и основывается на вербально-деятельностном подходе. ...
Современные технологии обучения: личностно-ориентированные технологии
обучения
Личностно-ориентированные технологии в качестве планируемых результатов предполагают не столько строго фиксированные знания и специальные умения по конкретной учебной дисциплине, сколько индивидуальные особенности субъекта познания и предметной деятельности. Образовательный процесс личностно-ориент ...
Особенности работы по обучению рассказыванию детей дошкольного возраста с
ОНР
Методика работы по развитию связной речи дошкольников с ОНР освещена в ряде научных и научно-методических трудов по логопедии, таких как "Программа коррекционного обучения и воспитания детей с общим недоразвитием речи 6-го года жизни", Филичева Т. Б., Чиркина Г. В. "Подготовка к школ ...