Методические особенности решения нестандартных задач

Страница 2

Умение подбирать вспомогательные задачи свидетельствует о том, что учащиеся уже владеют определенным опытом решения нестандартных задач. Если этот опыт невелик, то можно предложить учащимся вспомогательные задачи. Умело поставленные вопросы, вспомогательные задачи помогут понять идею решения.

Необходимо стремиться к тому, чтобы учащиеся испытывали радость от решения трудной для них задачи.

Рассмотрим примеры решения таких задач, с тем, чтобы выяснить особенности процесса их решения.

1. В трех ящиках 300 яблок. Число яблок первого ящика составляет половину числа яблок второго ящика и треть числа яблок третьего ящика. Сколько яблок в каждом ящике?

Решение. Эта задача является текстовой. Для подобных задач никакого общего правила, определяющего точную программу, их решения не существует. Однако это не значит, что вообще нет каких-либо указаний для решения таких задач. Обозначим количество яблок в первом ящике через х. Тогда во втором ящике было 2х яблок, в третьем - 3х. Следовательно, сложив все числа х+2х+3х, мы должны получить 300 яблок. Получаем уравнение х+2х+3х=300.Решив уравнение, найдем: х=50 яблок, 2х=100 яблок, 3х=150 яблок.

Значит, в первом ящике было 50 яблок, во втором ‑ 100 яблок, в третьем ‑ 150 яблок. Проанализируем процесс приведенного решения задачи. Сначала мы определили вид задачи "текстовая задача", и, исходя из этого, возникла идея решения ("составить уравнение").

Для этого, пользуясь общими указаниями и образцами решения подобных задач, полученных на уроках ("надо обозначить одно из неизвестных буквой, например х, и выразить остальные неизвестные через х, затем составить равенство из полученных выражений"), мы построили уравнение.

Заметим, что эти указания, которыми мы пользовались, не являются правилами, ибо в них ничего не сказано, какое из неизвестных обозначить через х, как выразить остальные неизвестные через х, как получить нужное равенство и т.д. Все это делается каждый раз по-своему, исходя из условий задачи и приобретенного опыта решения подобных задач. Полученное уравнение представляет собой уже стандартную задачу. Решив её, мы тем самым решили и исходную нестандартную задачу.

Смысл решения данной задачи состоит в том, что с помощью особого приема (составление уравнения) мы свели её решение к решению стандартной задачи.

2. В магазин "Цветы" привезли 30 желтых тюльпанов и столько же красных. Каждые 3 желтых тюльпана стоили 20 руб., а каждые 2 красных тюльпана стоили 30 руб. Продавец сложила все эти тюльпаны вместе и решила сделать букеты по 5 тюльпанов и продавать их по 50 руб. Правильно ли она рассчитала?

Решение. Найдем стоимость всех тюльпанов, если бы продавец не складывала тюльпаны вместе (реальную стоимость) руб. Найдем стоимость тюльпанов в том случае, когда продавец сложила их по 5 в букеты и стала продавать по 50 руб. (предполагаемая стоимость) руб. Сравниваем реальную и предполагаемую стоимость тюльпанов 650 руб. > 600 руб. Обнаруживаем, что расчет продавца ошибочен, т.к. при сложении всех тюльпанов и продажи их по 5 шт. в букетах она теряет 50 руб.

Процесс решения этой нестандартной задачи состоит в следующем: данную задачу мы разбили на такие подзадачи:

1) нахождение реальной стоимости;

2) нахождение предполагаемой стоимости;

3) сравнение полученных стоимостей и вывод о расчете продавца.

Решив эти стандартные подзадачи, мы в конечном итоге решаем и исходную нестандартную задачу. По мнению Л.М. Фридмана, процесс решения любой нестандартной задачи состоит в последовательном применении двух основных операций:

• сведение (путем преобразования или переформулирования) нестандартной задачи к другой, ей эквивалентной, но уже стандартной (способ моделирования);

• разбиение нестандартной задачи на несколько стандартных вспомогательных подзадач (способ разбиения). Для того чтобы легче было осуществлять способы разбиения и моделирования, мы считаем полезным построение вспомогательной модели задачи ‑ схемы, чертежа, рисунка, графа, графика, таблицы.

Страницы: 1 2 3 4

Великая педагогика:

Классификация и характеристика подвижных игр
Существует несколько классификаций подвижных игр. Традиционно игры различают по наличию/отсутствию инвентаря, по количеству участников, по степени интенсивности и специфики физической подготовки, наличию/отсутствию ведущего, месту проведения (двор, комната, водоем), по элементам разметки пространст ...

Проблемы воспитания одаренных детей
Казалось бы, ребенку, опережающему сверстников по уровню интеллекта, уготовано более счастливое детство, ему будет особенно легко учиться. К сожалению, на практике все выходит наоборот, воспитание оборачивается драмой. Велика в этом роль родителей, встречаются две наиболее распространенные крайност ...

Характеристика СМИ и их влияние на развитие личности подростков
Средства массовой информации (СМИ) - представляют собой учреждения, созданные для открытой, публичной передачи с помощью специального технического инструментария различных сведений любым лицам - это относительно самостоятельная система, характеризующаяся множественностью составляющих элементов: сод ...

Категории

Copyright © 2018 - All Rights Reserved - www.zelgo.ru