Изучение арифметических действий и их свойств в различных системах обучения

Педагогическая информация » Формирование понятия свойств арифметических действий у младших школьников » Изучение арифметических действий и их свойств в различных системах обучения

Страница 4

Направленность процесса обучения математике в начальных классах на формирование основных мыслительных операций позволяет включить интеллектуальную деятельность младшего школьника в различные соотношения с другими сторонами его личности, прежде всего с мотивацией и интересами, оказывая тем самым положительное влияние на развитие внимания, памяти (двигательной, образной, вербальной, эмоциональной, смысловой), эмоции и речи ребенка.

Практическая реализация концепции находит выражение:

в логике построения содержания курса, в основе, которой лежит система математических понятий и общих способов действий;

в методическом подходе к формированию понятий и общих способов действий, в основе которого лежит установление соответствия между предметными - вербальными - схематическими и символическими моделями;

в системе учебных заданий, которая адекватна концепции курса, логике построения его содержания и нацелена на осознание школьниками учебных задач, на овладение способами их решения и на формирование у них умения контролировать и оценивать свои действия.

В связи с этим процесс выполнения учебных заданий носит продуктивный характер, который исходя из психологических особенностей младших школьников определяется соблюдением баланса между логикой и интуицией, словом и наглядным образом, осознанным и подсознательным, догадкой и рассуждением.

В процесс выполнения учебных заданий включается и репродуктивная деятельность, которая связана с использованием необходимой математической терминологии для объяснения выполняемых действий, с вычислениями, с усвоением определенных правил. Но при этом даже выполнение вычислительных упражнений обязательно сопровождается выявлением определенных зависимостей, связей, закономерностей. Для этого в заданиях специально подбираются математические выражения, при анализе которых дети используют математические понятия, свойства и приемы умственных действий. Это способствует не только быстрому формированию вычислительных умений и прочных вычислительных навыков, но и повышению уровня вычислительной культуры обучающихся.

В предлагаемом курсе дети сначала усваивают (или уточняют, если они пришли в школу подготовленными в этом плане) последовательность слов-числительных, которой можно пользоваться для счета предметов. Затем овладевают операцией счета, т.е. устанавливают взаимно однозначное соответствие между предметом и словом-числительным. Заменяя слова-числительные знаками (в произвольном порядке), обучающиеся знакомятся с цифрами и учатся красиво писать их. Можно, например, начать с цифры 1, затем научиться писать цифры 4, 7, 6, 9 и т.д.

В теме "Однозначные числа" учащиеся знакомятся с отрезком натурального ряда чисел от 1 до 9. Пересчитывая предметы данной совокупности и заменяя слова-числительные соответствующими знаками (цифрами), они получают ряд чисел, которым можно пользоваться для счета предметов. Принцип построения этого ряда осознается детьми в процессе выполнения различных заданий, которые связаны с операцией счета, присчитывания и отсчитывания.

Знакомство обучающихся с лучом, отрезком и способом измерения длины с помощью различных мерок позволяет ввести понятие числовой луч и использовать его как наглядное средство для сравнения чисел, а затем для их сложения и вычитания.

В качестве математической основы разъяснения смысла, сложения выступает теоретико-множественная трактовка суммы как объединения множеств, не имеющих общих элементов. Она легко переводится на язык предметных действий, что позволяет при формировании представлений о смысле сложения опираться на опыт детей, активно используя счет и операции присчитывания и отсчитывания.

Для разъяснения смысла сложения используется идея соответствия предметного действия его словесному описанию и математической записи, которые интерпретируются на числовом луче. Для чтения математических записей вводится терминология: выражение, равенство, слагаемые, значение суммы, употребление которой позволяет исключить такой термин, как примеры. Интерпретация сложения на числовом луче помогает ребенку абстрагироваться от предметных действий.

Страницы: 1 2 3 4 5 6

Великая педагогика:

Система начального образования
В Нидерландах все дети от 6 до 16 лет обязаны посещать школу. Первая ступень обучения - базовая школа или начальная школа (большое количество детей посещают ее уже с 4 лет), где обучение проводится до 12-13 лет. Эти школы невелики, с численностью от 100 до 500 учащихся. Система реформирования начал ...

Методика организации и проведения коррекции речи дошкольников на музыкальных занятиях
Наша опытно-экспериментальная работа проводилась на базе ГУО «Ясли-сад» г.Ивье. В эксперименте приняло участие 10 детей 4-5 лет с общим речевым недоразвитием (III уровень), посещающих логопедическую группу. Опытно-экспериментальная работа включала в себя несколько этапов: констатирующий, собственно ...

Восприятие и представление
В обыденной жизни слово «представление» употребляется в различных значениях. Оно может означать понимание, выра­жаемое, например, вопросом: «Ты представляешь себе, что ты натворил?», упо­требляться в значении знания о чем-то, например в высказывании «Я не пред­ставляю себе [не знаю], что это такое» ...

Категории

Copyright © 2019 - All Rights Reserved - www.zelgo.ru