Предмет теории вероятностей

Страница 3

Достоверное и невозможное события в данном испытании являются противоположными.

Событие А называют случайным, если оно объективно может наступить или не наступить в данном испытании.

Событие А6 - выпадение шести очков при бросании игральной кости - случайное. Оно может наступить, но может и не наступить в данном испытании. {LINKS}

Всякое испытание влечет за собой некоторую совокупность исходов - результатов испытания, т.е. событий. Во многих случаях возможно перечислить все события, которые могут быть исходами данного испытания.

Классическое определение вероятности

Говорят, что совокупность событий образует полную группу событий для данного испытания, если его результатом обязательно становится хотя бы одно из них.

Примеры полных групп событий: выпадение герба и выпадение цифры при одном бросании монеты; попадание в цель и промах при одном выстреле; выпадение одного, двух, трех, четырех, пяти и шести очков при одном бросании игральной кости.

Рассмотрим полную группу попарно несовместимых событий U1, U2, ., Un, связанную с некоторым испытанием. Предположим, что в этом испытании осуществление каждого из событий , (i = 1,2, ., n) равновозможное, т.е. условия испытания не создают преимущества в появлении какого-либо события перед другими возможными.

События U1, U2, ., Un, образующие полную группу попарно несовместимых и равновозможных событий, называется элементарными событиями.

Вернемся к опыту с подбрасыванием игральной кости. Пусть - событие, состоящее в том, что кость выпала гранью с цифрой 1. События U1 , U2, . , U6 образуют полную группу попарно несовместимых событий. Так как кость предполагается однородной и симметричной, то события U1 , U2, . , U6 являются и равновозможными, т.е. элементарными.

Событие А называют благоприятствующим событию В, если наступление события А влечет за собой наступление события В.

Пусть при бросании игральной кости события U2, U4, и U6 -появление соответственно двух, четырех и шести очков и А - событие, состоящее в появлении четного числа очков; события U2, U4 и U6 благоприятствуют событию А.

Вероятностью Р(А) события А называют отношение числа элементарных событий, благоприятствующих событию А, к числу всех элементарных событий, т.е.

Р(А)= .

Вычислим вероятность выпадения герба при одном бросании монеты. Очевидно, событие А - выпадение герба и событие В — выпадение цифры образуют полную группу несовместимых и равновозможных событий для данного испытания. Значит, здесь n = 2. Событию А благоприятствует лишь одно событие - само А, т.е. здесь m = 1. Поэтому

Р(А) = .

Найти вероятность того, что при бросании игральной кости выпадет число очков, делящееся на 2 (событие А).

Число элементарных событий здесь 6. Число благоприятствующих элементарных событий 3 (выпадение 2, 4 и 6). Поэтому Р(А)== .

Страницы: 1 2 3 4 5

Великая педагогика:

Методические особенности решения нестандартных задач
Главная цель задач ‑ развить творческое и математическое мышление учащихся, заинтересовать их математикой, привести к "открытию" математических фактов. Я считаю, что достичь этой цели с помощью обычных стандартных задач невозможно. Опыт использования ряда нестандартных задач показыв ...

Системный подход к определению понятий физического воспитания
Актуальность системного подхода к определению основных понятий физического воспитания обусловлена прежде всего необходимостью уточнения соотношения данных понятий с ведущими общепедагогическими понятиями и категориями. Например, в настоящее время вызывает большое сомнение чрезмерно широкое использо ...

Среднее образование
После получения начального образования учащиеся проходят национальное тестирование и в зависимости от его результатов продолжают обучение в средней школе по одному из трех направлений: - подготовительное среднее образование (MAVO) – 4 года; - общее среднее или предуниверситетское образование (HAVO) ...

Категории

Copyright © 2025 - All Rights Reserved - www.zelgo.ru