Формула Бейеса
Пусть в условиях рассуждения, относящегося к формуле полной вероятности, произведено одно испытание, в результате которого произошло событие А. Спрашивается: как изменились (в связи с тем, что событие А уже произошло) величины P(Bk), k = 1, . , п. {LINKS}
Найдем условную вероятность РA(Вk).
По теореме умножения вероятностей и формуле (3) имеем:
Отсюда:
Наконец, используя формулу полной вероятности, находим
(k=1, 2, …, n). (7)
Формулу(7) называют формулой Бейеса (Байеса)
Пример. Большая популяция людей разбита на две группы одинаковой численности. Диета одной группы отличалась высоким содержанием ненасыщенных жиров, а диета контрольной группы была богата насыщенными жирами. После 10 лет пребывания на этих диетах возникновение сердечнососудистых заболеваний составило в этих группах соответственно 31% и 48%. Случайно выбранный из популяции человек имеет сердечно-сосудистое заболевание. Какова вероятность того, что этот человек принадлежит к контрольной группе?
Введем обозначения для событий:
А - случайно выбранный из популяции человек имеет сердечно-сосудистое заболевание;
B1 - человек придерживался специальной диеты;
В2 - человек принадлежал к контрольной группе. Имеем
Р(В1) = Р(В2) = 0,5,
(A) = 0,31,
(A) = 0,48.
Согласно формуле полной вероятности
Р(А) = 0,5 ∙ 0,31 + 0,5 ∙ 0,48 = 0,395
и, наконец, в силу формулы (7) искомая вероятность
.
Таким образом, можно привести много разнообразных примеров случайных величин. Все же и в мире случайностей обнаруживаются определенные закономерности. Математический аппарат для изучения таких закономерностей и дает теория вероятностей. Она занимается математическим анализом случайных событий и связанных с ними случайных величин.
Для решения задач по теории вероятностей следует применять следующие теоремы: сложения вероятностей несовместимых событий, умножения вероятностей, сложений вероятностей совместимых событий; формулы: полной вероятности, Бейеса (Байеса).
Одной из форм дифференцированного обучения по курсу теории вероятностей может являться факультативный курс.
Великая педагогика:
Производная и ее применение
Часто нас интересует не значение какой-либо величины, а ее изменение. Например, сила упругости пружины пропорциональна удлинению пружины; работа есть изменение энергии; средняя скорость — это отношение перемещения к промежутку времени, за который было совершено это перемещение, и т. д. При сравнени ...
Материально-техническое обеспечение образовательного процесса
Материальная база Центр развития творчества детей и юношества г. Киселевска располагает: · Учебными помещениями: 5; · Швейной мастерской, оснащенной универсальными (стачивающая) и специальными (петельная, обметочная, зигзаг) машинами, манекенами, оборудованием для влажно-тепловых работ; · Двумя хор ...
Общая характеристика Франции
Франция — высокоразвитая страна, ядерная и космическая держава. По общему объему экономики страна занимает ведущие места в Европейском Союзе, по ВВП на душу населения стабильно входит в первую мировую десятку. Существует планирование, но оно носит не нормативный, а индикативный характер (намеченные ...