Производная и ее применение

Страница 3

Равенство (при нечетном п) позволяет выразить корень нечетной степени из отрицательного числа через арифметический корень той же степени. Например,. {LINKS}

Замечание. Для любого действительного х

Замечание. Удобно считать, что корень первой степени из числа а равен а. Как вы уже знаете, корень второй степени из числа называют квадратным корнем, а показатель 2 корня при записи опускают (например, корень квадратный из 7 обозначают просто ) Корень третьей степени называют кубическим корнем.

2. Основные свойства корней. Напомним известные вам свойства арифметических корней л-й степени.

Для любого натурального п, целого k и любых неотрицательных чисел а и b выполнены равенства:

Докажем свойство 10. По определению — это такое неотрицательное число, п-я степень которого равна ab. Число · неотрицательно. Поэтому достаточно проверить справедливость равенства (·)п=ab которое вытекает из свойств степени с натуральным показателем и определения корня n-й степени: (·)п=()n()n=ab

Аналогично доказываются следующие три свойства:

Докажем теперь свойство 50. Заметим, что n-я степень числа ()k равна ak:

По определению арифметического корня ()k=k (так как ).

Страницы: 1 2 3 

Великая педагогика:

Отраслевая педагогика
Отраслевая педагогика изучает особенности воспитания и обучения в зависимости от характера социальной группы или профессий: это — педагогика семьи, производственная, профессиональная, в том числе военная, правовая, спортивная общественных организаций и объединений (социальная педагогика), культурно ...

Основные методы и приемы обогащения словарного запаса на уроке русского языка в начальной школе
Поскольку дети младшего школьного возраста имеют свои психологические особенности, о которых говорилось выше, то методы и приемы на уроках в младшей школе должны носить специфический характер, в частности на уроках должны сочетаться различные виды деятельности учащихся, вводиться элементы игры, что ...

Теоретические основы современных технологий в образовании
Идея непрерывного образования может быть реализована в современных условиях, если и общеобразовательная, и высшая школы смогут эффективно решить задачи по передаче накопленного опыта молодому поколению: обучить методам работы с информацией, методам создания новых знаний, а самое важное — методам по ...

Категории

Copyright © 2025 - All Rights Reserved - www.zelgo.ru