Еще раз обратим внимание на то, что две важные операции — деление и извлечение корня четной степени — выполнимы не всегда (нельзя разделить на нуль, нельзя извлечь корень четной степени из отрицательного числа). Это ограничение надо помнить и учитывать при нахождении области определения функции, в задании которой участвуют указанные операции. {LINKS}
Значения функции вычисляются путем последовательного выполнения операций: возведение в квадрат, прибавление единицы, извлечение квадратного корня. Можно сказать, что функция
является «сложной функцией», составленной из более простых: и=х2, u = u+l, у=√u.
Итак, правила вычисления значений функции могут задаваться формулами, полученными с помощью известных нам ранее действий над числами.
Другой важный способ задания функции — табличный. В таблице можно непосредственно указать значения функции, однако лишь для конечного набора значений аргумента.
Вычисление значений функции может быть запрограммировано в калькуляторе. Вычислительное устройство может служить для вас способом задания новой функции. Современные вычислительные машины снабжены клавишами, позволяющими немедленно вычислить значения многих полезных функций.
Наконец, часто функцию задают с помощью графика. Графический способ задания функции очень удобен: он дает возможность наглядно представить свойства функции. Приведем примеры.
На рисунке 3 изображены вольтамперные характеристики некоторых электрических элементов, т.е. графически заданные зависимости напряжения от силы тока. Они получены не по готовой формуле, а экспериментально.
На рисунке 4 изображена кардиограмма работы человеческого сердца. Ее можно считать графиком изменения электрического потенциала на волокнах сердечной мышцы во время сердечного цикла.
Рассмотрим функцию y = f(x), график которой изображен на схеме II. Что можно сказать о свойствах функции f, глядя на график?
Спроектируем точки графика на ось х. Мы получим отрезок [а; б]. Этот промежуток является областью определения функции. Действительно, каждая прямая, параллельная оси у, проходящая через точку этого отрезка, пересекает график ровно в одной точке; вертикальные прямые, проходящие через точки х вне отрезка [а; б], график не пересекают.
Рассмотрим точки пересечения графика с осью х. На чертеже это х1, х2, х3, х4. В этих точках функция обращается в нуль. Числа х1, х2, х3, х4.являются решениями уравнения f(x) = 0 и называются корнями функции (или ее нулями).
Корни функции f разбивают область определения на промежутки, в каждом из которых функция сохраняет постоянный знак. Функция положительна на промежутках [а;х1), (х1;х2), (х4;b] и отрицательна на промежутках (х1;х2), (х3;х4).
Объединение промежутков представляет [а;х1), (х2;х3), и (х4;b] собой решение неравенства f (х) > 0, а объединение промежутков (х1; х2) и (х3;х4).— решение неравенства f(x)<0.
4) График функции можно сравнить с профилем дороги, которая то поднимается в гору, то опускается в ложбину. Самые верхние и самые нижние точки этой дороги («вершины») играют важную роль при описании графика. Они соответствуют значениям аргумента, обозначенным на графике т1, т2, т3.
Великая педагогика:
Особенности восприятия дошкольниками художественных текстов
Восприятие художественного произведения - очень сложная, развивающаяся во времени внутренняя деятельность, в которой участвуют воображение, восприятие, внимание, мышление, память, эмоции, воля. Каждый из этих процессов выполняет свою важную функцию в общей деятельности — в знакомстве с явлениями ок ...
Принципы контролирования успеваемости
Контролирование, оценивание знаний, умений - очень древние компоненты педагогической технологии. Возникнув на заре цивилизации, контролирование и оценивание являются непременными спутниками школы, сопровождают ее развитие. Тем не менее, по сей день идут жаркие споры о смысле оценивания, его техноло ...
Особенности совместной взросло-детской деятельности в
процессе формирования коммуникативных умений у старших дошкольников
В своих работах Д.Б. Эльконин подчеркивал, что для ребенка образ взрослого, является не просто образом другого человека, а образом себя самого, своей собственной будущности, воплощенным в лице «другого». Д.Б. Эльконин предполагал, что «с определенного момента развития ребенок - это всегда «два чело ...